
Snoring Detection on a Microcontroller
Adriana Rotaru

Computer Science Department
Harvard University

Cambridge, MA, USA
adrianarotaru@college.harvard.edu

Jiayu Yao
Computer Science Department

Harvard University
Cambridge, MA, USA
jiy328@g.harvard.edu

Kelly Zhang
Computer Science Department

Harvard University
Cambridge, MA, USA

kellywzhang@seas.harvard.edu

Abstract—Snoring is related to a common medical condition
that can lead to many serious health issues including diabetes,
stroke, and depression. Due to the negative health impacts of
such medical condition, it is crucial for people to know whether
they snore and understand their snoring patterns and triggers of
snoring. In this paper, we propose a bed-side snoring detection
program on microcontroller device that automatically identifies
snoring sounds. Our device extracts spectrograms from real time
audio data and applies a Convolutional Neural Network (CNN)
to classify whether an audio sample contains snoring sounds or
not. In our work, we investigate different pre-processing methods,
including Fast Fourier Transforms (FFT) and Mel-frequency
cepstral coefficients (MFCC), as well as different neural network
model architectures. We evaluate different approaches in terms
of accuracy and model size. We deploy our models on a micro-
controller with 1MB of Flash with minimal power consumption
that can be run continuously. The best model we deploy has
accuracy of 96.86%, which is comparable to that of existing
snoring detection models. However, our model is of size 18,712
bytes which is over 500 times smaller than other models in the
literature (e.g. 9.8MB of [7]).

Index Terms—Snoring, MFCC, FFT, Arduino, Tensorflow
LITE/Micro

I. INTRODUCTION

A. Motivation and Background

A study conducted by the National Commission on Sleep
Disorders Research found out that more than 40 million
Americans suffer from various types of sleep disorders [12].
Snoring is one of the most common symptoms of Obstructive
Sleep Apnea (OSA), which is a breathing sleep disorder that
is found across different genders and ages. OSA disturbs
sleep and often disrupts the balance of oxygen and carbon
dioxide in the body. If OSA goes without treatment, it can
lead to dangerous daytime drowsiness and even serious health
conditions such as cardiovascular issues, diabetes, stroke, and
depression [9]. Additionally, a patient’s snoring pattern can
be critical for informing their diagnosis and treatment, which
makes detecting snoring patterns an important problem.

We are interested in developing a bed-side microcontroller
device that can detect snoring sounds and monitor people’s
snoring patterns while sleeping. While one could use a device
like a phone for snoring audio detection, to do so, the user
would have to ensure that the phone is charged and the
program is turned on before going to sleep, which can be
inconvenient. Unlike many other snoring detection devices,
with a microcontroller device placed by the bed, the user

does not have to remember to turn on the device or to
ensure it is charged or attached to their body, which can
be inconvenient and uncomfortable [7]. Our microcontroller
device is inexpensive and can be battery powered without
requiring frequent charging or battery replacement because of
low power consumption.

Moreover, using a microcontroller offers additional privacy
protection since prediction is performed on device. The ad-
vantage of on device prediction is that the raw audio sounds
will not be required to be sent to the phone, computer, or
cloud, which increases the privacy risk of sending unprotected
information to a device that could be hacked or misplaced.
The microcontroller would only send the sequence of snoring
predictions to another device, like a phone or computer, which
can then be used to monitor the snoring or analyze the
snoring pattern. With an accurate snoring prediction model,
the user can check their snoring frequency and with additional
analysis, the users can even learn if snoring is related to other
behaviors (e.g. drinking alcohol could make snoring worse).
Additionally, the microcontroller could be equipped with an
external sensor that could prompt the person to change position
when snoring is detected during sleeping.

B. Our Contribution

In this work, we describe the process of developing and
deploying a snoring detection model onto a microcontroller.
Our snoring detection model can run continuously on a
microcontroller with high accuracy and small memory and
power consumption. Compared to other work on audio snoring
detection [7], our snoring detection model can be deployed on
much smaller devices with high accuracy that is comparable
to that of larger models. Finally, we also discuss the chal-
lenges associated with training and deploying tiny Machine
Learning (tinyML) models. Our work can act as a case study
for others trying to deploy machine learning models onto
microcontrollers.

II. RELATED WORK

In the previous literature, snoring detection models often
utilize vibration information of the snoring patters and rely
on mechanical methods[13]. In this project we will focus on
snoring detection by extracting spectrum features from the
raw audio and performing prediction task with deep learning
models.

Fast Fourrier Transform (FFT) is a frequently used tech-
nique in audio processing for feature extraction. In addition
to FFT, more complicated preprocessing methods like Mel
frequency cepstral (MFFC) from Khan or deep spectrum
feature extraction from Amiriparian et al. are commonly used
in signal processing. The advantage of FFT is faster on
device execution and greater compatibility with pre-processing
methods developed for different devices. Previous works have
found out that the optimal frequencies needed for snoring
detection differ from those optimal for speech detection. For
example, Agrawal et al. found that median frequency for
palatal (velum) snoring is 137 Hz and the median frequency
for tongue based snoring is located at 1,243 Hz. Additionally,
Qian et al. performed snoring sound classification by fusing
different acoustic features and found that a combination of
upper and lower level frequencies to be amongst the best per-
forming. Given that previous works use MFCC or spectrum-
based methods that amplify certain frequencies over others, in
our work we experiment with multiple types of preprocessing
methods. For example, a simple FFT allows extraction of
features that reflect a wider variety of snoring frequencies
in the dataset and minimizes latency due to pre-processing
compared to MFCC.

Existing snoring detection works have been primarily based
on deep neural networks, including CNNs and Recurrent
Nerural Networks (RNNs). Although these models have high
accuracies of 91-98.40 %, as shown in Table I, many do not
report model sizes and the ones that do are too large to fit on
many microcontroller devices.

TABLE I: Comparison with other work

Author Model Architecture Accuracy

R.Nonaka, et. al [8] Logistic Regression
with auditory features

97.30%

E.Dafna, et. al. [4] AdaBoost classifier
with spectral features

98.40%

H.Romero, et. al.[11] Deep learning with
bottleneck features

91.11%

T.Emoto, et. al [5] Deep NN 75.10 %

S.Amiriparian [2] Convolutional NN 92.50%

Arsenali, et. al [3] Recurrent Neural
Network with MFCC

95.00%

Khan [7] CNN with MFCC 96.00%

Proposed Tiny Convolutional
NN

96.86%

(Note that the accuracies reported here are for various
datasets. In our work, we compute accuracies on the dataset
used by Khan [7].)

In our work, we experiment with different model archi-
tectures and compare them in terms of size, accuracy, and
on-device performance. Our baseline models are based on
those from the MicroSpeech Keyword Spotting Project of
TensorflowLITE Micro library, which are modified to adapt to
the binary classification of snoring and no-snoring. Comparing
these models with another baseline CNN introduced by Khan,

our best deployed model has similar accuracy and is more than
500 times smaller in size (9.8 MB vs. 18 KB).

III. METHODS

A. Dataset and Pre-processing

Collecting snoring audio data can be quite difficult, since
deep neural network models require many training examples.
Moreover, to train a model that is applicable to many different
people, we require snoring data from people with a wide range
of snoring conditions, age, gender, vocal features, etc. In this
work we use the dataset constructed by [7], which is publically
available here on Kaggle. The dataset includes data from
people of various ages and genders. The data set also includes
non-snoring sounds that are representative of disturbances in
a sleeping environments, such as baby cries, wind sounds, TV
noises, etc. The data samples are 1000 one-second sound clips,
with 500 samples for each of the 2 classes: snoring versus
non-snoring. Among the 500 snoring samples, 363 samples
consist of snoring sounds of children, adult men and adult
women without any background sound. The remaining 137
samples consist of snoring clips having a background of non-
snoring sounds [7]. In order to improve model performance,
we augmented the training dataset with additional samples of
silence, background noise, and human speech [14].

In order to make accurate inferences from the data, appro-
priate pre-processing methods have to be applied for feature
extraction. We selected the pre-processing methods to be con-
sistent with the variability in the audio data, the model’s data
format requirements, and the compatibility of the libraries with
the device, as well as to minimize the pre-processing time on
device. For the pre-processing, the clips, which were initially
at a sample rate of 48 kHz, were converted to 16kHz using
the PyDub Audiosegment library, in order to minimize the size
of the inputs (spectrograms) to the model without sacrificing
on audio quality. To convert the clips to spectrograms, the
audio files were traversed by 30ms windows with 20ms jumps
(strides), as shown in Figure [1] below [15]. Each of the 49
frames are mapped to a row in the spectrogram, so there are
49 rows in the final spectrogram. FFT with a bin count of
512 was applied to each of the 30ms frames, resulting into an
array of 256 values. The values were averaged in groups of
6, leading to 43 values, which were then reduced to 40. The
resulting spectrogram is of size 49x40.

Fig. 1: Audio Processing Example. Source: "TinyML" by Pete
Warden and Daniel Situnayake [15]

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/speech_commands
https://www.kaggle.com/tareqkhanemu/snoring
https://github.com/jiaaro/pydub

In addition to experimenting with FFT preprocessing, we
also tried using a customized MFCC algorithm for preprocess-
ing, which was adapted from Khan et. al [7]. For this method,
the audio signals were sliced into 32 frames of 30ms each and
the power spectrum, as shown in Figure [2b], was computed
using the SpeechPy library. The MFCC had 10 filterbanks
placed uniformly at 100Hz intervals from 100Hz to 1000Hz,
22 filterbanks placed uniformly for frequency above 1000Hz.
This resulted in a 2D 32x32 (n_filters x n_frames) array of
features that was converted to a gray image as in Figure [2a].

(a) Spectrogram (b) Power Spectrum

B. Hardware and Sensors

We deploy our snoring detection model onto a Arduino
Nano 33 BLE nRF52840 board, which is a 32-bit ARM®
Cortex™-M4 CPU running at 64 MHz. The device has 1MB
of CPU Flash Memory and allows deployment for models as
large as 100KB after quantization.

C. Software Framework

The speech commands example of the TensorFlowLITE
library was adapted for training and the micro speech de-
ployment framework, from the Wake Words assignment, was
modified for deployment.

For training, four classification labels were used, the
same as in the micro_speech example, which includes a
silence and an unknown category. We used more than
two classes during the training because merging data with
dissimilar patterns (e.g. silence versus no-snoring) affects
the model performance. The silent_percentage and un-
known_percentage_frequency were set to 25% to make the
four classes balanced, the background_frequency was set to
0.8 and background_volume_frequency to 0.1 (see details in
train_snoring_model.ipynb). We set the pre-processing flag to
micro and experimented with all the baseline models under the
model_architecture flag. As written in the speech_commands
framework, quantization was used to reduce the model sizes.

The deployment framework was modified based changes
we made to the micro_speech experimental framework. For
example, we modified the model architectures and model
arena sizes, and also tuned deployment prediction sensitivity
parameters, like the prediction threshold and the voting mech-
anism to predict. For deployment, the unknown and silence
classes were mapped to no_snoring because we only want to
distinguish snoring from all other classes, as done in previous
work [7]. (See all modifications made to the code under
all_summary.md).

D. Model Architecture

Given the strict memory constraints of the microcontroller
we wanted to deploy on, we experimented with many different
model architectures and compared models in terms of their
sizes and test prediction accuracy. All the models were trained
using the momentum optimizer and with a cross-entropy loss
function. Given the audio classification task and the spectro-
grams input formats, most of the models we tested were CNN-
based. The primary work we compared to was the Khan CNN
model of size 9.8 MB and accuracy of 96.00%. Since the
model of Khan is too large to fit on the microcontroller, we
were interested in developing a model with similar accuracy,
that was much smaller. We tested the following baseline
models proposed in the open source speech_commands code:

• low_latency: a depthwise convolutional 2D layer, three
(128, 128, 4) fully connected layers.

• tiny_conv: a depthwise convolutional 2D layer, a 4-units
fully connected layer

• single_fc: a single 4-units fully connected layer
• tiny_embedding_conv: a depthwise convolutional 2D

layer, a convolutional 2D layer, a 4-units fully connected
layer

• low_latency_svdf: a singular value decomposition filters
layer

• conv: a depthwise convolutional 2D layer, a Maxpool 2D,
a 4-units fully connected layer

Additionally, we proposed two additional models, which
were modifications of the baseline models, but aimed to better
trade-off accuracy and model size. The following custom
models were proposed:

• tiny_conv(256,128): a depthwise convolutional 2D layer,
three (256,128,4) fully connected layers.

• tiny_conv(128, 128): a depthwise convolutional 2D layer,
three (128, 128, 4) fully connected layers

For a detailed description of all the different model archi-
tectures, see the models section.

E. Deployment Framework

We modified the default deployment code of micro_speech
to reflect our specific classification task and to adapt our
detection intervals to reflect that of the periodicity of typical
snoring patterns. We then deploy the model based on the
micro-speech example from the Tensorflow Micro library,
which contains the FFT preprocessing and the inference code.
The deployment code is modified to the binary classification
task of differentiating between snoring vs. non-snoring audio
clips.

In snoring audio detection, the detection intervals are critical
because people tend to snore with specific time patterns.
Snoring often occurs cyclically with four second intervals
[6]. In addition, some snoring patterns can be irregular,
lasting longer than others. To reflect these real-life situ-
ations, we have tuned the parameters for the recognition
window in the deployment code. For instance, reducing the

https://pypi.org/project/SpeechRecognition/
https://store.arduino.cc/usa/nano-33-ble
https://store.arduino.cc/usa/nano-33-ble
https://github.com/tensorflow/tensorflow/tree/c36ad7be23583e9572e39cc4879b790746499cbe/tensorflow/lite/experimental/microfrontend

average_window_duration_ms increases the sensitivity of the
prediction and addresses the issue of frequent misses due
to irregular snoring patterns. Additionally, reducing the de-
tection_threshold and the minimum_count both increase the
sensitivity of the model and increase the false positive rate
while decreasing the false negative rate. Finally, tuning the
suppression_ms parameter, which is the time for which further
recognitions are suppressed, to match the separation between
the snores at 4 seconds would be reflective of real-life snoring
patterns.

IV. RESULTS

A. Models comparison

The first aspect we experimented with was the pre-
processing method. Specifically we compared a customized
MFCC pre-processing method with a simple FFT pre-
processing (as shown in preprocessing.py script). We trained
the same CNN model on the dataset with each of the different
pre-processing methods. We found that the model trained
on data pre-processed with FFT had 5-6% lower accuracy
compared to that trained on the data pre-processed with
the MFCC method. Additionally, we experimented with the
pre-processing methods developed in TensorFlow AudioOps.
Specifically we tried a baseline CNN models with the –
micro (which sets the preprocessing to FFT) and –mfcc pre-
processing methods. In these experiments, the float point
model with MFCC performed better than that with FFT (100%
vs 96.86%). However, the quantized model with MFCC had
unusually low accuracy at 68%. We conjecture that the input
pre-processed with MFCC suffers from accuracy loss during
INT8 quantization. From Figure 3, we see that the input pre-
processed with MFCC is more concentrated, which indicates
more bits are required for lossless decoding.

Fig. 3: Histogram of input after different pre-processing. Input
pre-processed with MFCC is highly concentrated around 0
while input pre-processed with FFT is more spread out.

Another disadvantage of MFCC is that it takes much
longer to run, which can affect the latency of the model.
Latency is important in snoring detection because it affects
how frequently the model predicts—a high latency model can
only predict at longer intervals—which can be sub-optimal if
snoring patterns occur at a different rate. Additionally, low
latency would be important if the snoring detection model
was connected to device that could prompt the user to change
sleeping positions when snoring is detected. We also had many
challenges integrating the MFCC pre-processing code into the

deployment code because the default deployment code used
FFT and adjusting the pre-processing would require significant
coding in C++. For these reasons, we focused on using FFT
pre-processing for all the models we deployed.

Each model was trained with silence and unknown cate-
gories in addition to the snoring and no_snoring categories, as
a way to augment data with background noise and silence. So
to be able to make our models comparable to those proposed
in [7], we mapped 4 categories into 2 categories (silence and
unknown classes are mapped to no_snoring) when computing
the testing accuracies using the results in the confusion matrix.
The accuracies of all the models that were tested are shown
below.

TABLE II: Summary of baseline models performance

Model Test Accuracy (with
mapping to 2
classes)

Size (bytes)

low_latency 98.11% 884,360

tiny_conv 96.86% 18,712

tiny_conv with
MFCC

100.00% 18,712

single_fc 89.93% 8,872

tiny_embedding_conv 89.93% 8,864

low_latency_svdf 98.11% 37,449

conv 97.48% 308,168

tiny_conv (256,128) 98.11% 1,062,816

tiny_conv (128,64) 98.11% 525,216

The best performing baseline models in testing that could be
deployed on Arduino were the tiny convolutional (tiny_conv)
and the single fully connected (single_fc) ones with accuracies
of 96.86% and 89.93% respectively. The convolutional model
encountered a memory corruption issue (see the On Device
Comparison section for more details) and the low latency
models was too large to fit on the microcontroller. The low
latency singular value decomposition model could not be
deployed because TensorFlowLITE has no support for SVDF.

Given the accuracy, size tradeoffs and compatibility limita-
tions, the single_fc and tiny_conv models were deployed for
comparison. Since tiny_conv had a great performance both
offline and on device, we explored variations of it found in
the tiny_conv_custom folder. The proposed models tiny_conv
(256,128) and tiny_conv (128,64) were modifications of the
tiny_conv model, obtained by adding two more fully connected
(FC) layers to it. The reason for adding the FC layers was
our previous observation of unusual high performance of the
single fully connected layer model [II] on a fairly complex 2D
dataset. The models with the highest in accuracy of 98.11%
were also much larger than the baseline, with sizes 525kB and
1000kB respectively. Looking at these 2 models with (256,

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/speech_commands/input_data.py

128) and (128, 64) fully connected layers, it turns out that
doubling the number of neurons in the fully connected layer
makes the size of the model explode and doesn’t significantly
change the accuracy. One takeaway from this result is that
for snoring detection, at least on this dataset, when the test
accuracy reaches at least 95%, increasing the model’s accuracy
requires a disproportionately large increase in the model size.

One analysis we performed to understand the relationship
between model size and model accuracy was to start with
the baseline tiny_conv model and add an additional fully
connected layer of various sizes. How these variations in the
final fully connected layer size affect accuracies and model
size are displayed in the following figure:

Fig. 4: Performance and model size tradeoff of variations
of the tiny_conv model. The numbered labels correspond to
the number of neurons in the fully connected layers that
were added to the existing baseline tiny_conv. For example,
tiny_128_64 corresponds to 2 fully connected layers of 128
and 64 added to the baseline model.

B. On Device Comparison

The top performing models (tiny_conv (128,64),
low_latency, conv) threw a memory corruption error
when deployed. The same type of error arose when
deploying the 2 custom models, despite maximizing the
use of the arena_size, which should allow the model
to fit on Flash (we were able to deploy similar sized
models). We found this memory corruption error was
commonly encountered by others when deploying a
newly trained model with the same speech commands
framework. Based on the github issue raised recently, this
problem is currently an unsolved TensorFlow problem:
https://github.com/tensorflow/tensorflow/issues/39938. Due
to these challenges, we primarily tested the tiny_conv
baseline in deployment. Additionally, the lack of support of
SVDFs on TensorFlowLITE made it impossible to test the
low_latency_svdf model, a model with the good size-accuracy
balance.

We found that the sensitivity parameters used for prediction
in deployment dramatically impacted the real world perfor-
mance of our model. Under the default sensitivity deployment
parameters, we found that our tiny convolutional model never

detected snoring (no false negatives). However, after adjusting
the sensitivity parameters we were able to get this model
to perform well in practice, achieving a minimal number of
false negatives and almost no false negatives. Specifically,
prediction deployment algorithm uses a voting mechanism for
predictions made in some past window of time; we adjusted
the detection threshold as well as the number of votes needed
within the time window for the code to trigger a classification.
For more details, see our deployment demo.

V. DISCUSSION

A. Takeaways

In this study, we found out that the development and the
deployment in tinyML is non-trivial. Given that there was an
open source method for wake word detection in tensorflow
lite, we thought it would be relatively straightforward to
adapt the setup for snoring detection. However, we ran into
many unexpected challenges. For example, we discovered
that small changes in the pre-processing procedure would
require significant changes in raw C++ code used for the pre-
processing procedure on device. Time-wise, we were not able
to modify the original FFT pre-processing to the MFCC pre-
processing that is used in other snoring detection work.

Moreover, we found that the best performing models off
device were generally also the best performing models on
device—however, all models had slightly lower accuracy in
deployment (empirically) than when testing offline on the com-
puter. Some reasons between offline and deployment accuracy
is that there may be small differences between the training and
real world testing data distributions. For example, the distance
between the device and the source of the sound also affects
the on device performance significantly. We also found that
the deployment performance was significantly impacted by the
hyperparameters for prediction including prediction threshold,
the amount of time between predictions, the window of past
predictions used for voting, etc. Based on our experience,
we advocate for more thorough and systematized real world
testing in order to truly make fair comparisons on the task we
care about.

Finally, we want to point out that this project can serve as a
case study for developers seeking to integrate data processing,
modeling and deployment architectures into a real life TinyML
application. The issues that can arise due to incompatibility
or unsupported pre-processing methods can lead to sacrificing
performance. We were not able to deploy many of our top
performing models due to memory corruption issues encoun-
tered and a lack of support for MFCC pre-processing on
device, and as a result our final deployed model had much
lower accuracy than could be deployed on such a device.
In summary, while it was easy to train many models in the
TensorFlowLite framework, we encountered many problems
regarding the reliability and flexibility of the open source
deployment code that inhibited us from deploying many of the
models we trained. Therefore it is essential for people to better

https://github.com/tensorflow/tensorflow/issues/39938
https://drive.google.com/file/d/1a0DbmxmQt3T-vHQ8zlxFs0jkoa_-9WzQ/view?usp=sharing

develop more flexible and reliable tools to help developers
throughout the entire training to deploying pipeline in order
to advance the field of TinyML.

B. Future Directions

In terms of future work, some more immediate next steps
would be to deploy the MFCC pre-processing step on device
and to collect additional snoring sound data for training.
Khan reported 53ms for the MFCC pre-processing step on
the RasperryPi device [7]. If MFCC can be integrated into
our pipeline, it will take longer on the Arduino board, which
has to be addressed in the implementation. Additionally, in
future work, we could develop a more systematic method
for deploying a multitude of models for testing, with an
automatic parametrization, instead of manually tweaking the
parameters, as well as for testing models on device. In terms
of improving model performance, while additional effort could
be put in developing a better deep neural network architecture,
we believe that the most gains in performance will be obtained
from changing the pre-processing and collecting more data
that is specific to the use case (e.g. specific environments and
located at reasonable distance from bed as in a real use case).

Regarding more long term work, this snoring model could
be personalized by having the model trained on device
with a small subset of data which includes the user’s own
snoring/non-snoring audio data. This could be achieved by us-
ing transfer learning with warm start neural network training.
Additionally the application of the snoring detection model
could be expanded towards prevention. A sensor could be
integrated with the device (ex: arm cuff that vibrates), which
would wake up the user to prompt them to change their
sleeping position when they snore. For such a use case, it
would be crucial to ensure the false positive rate to be be
low because frequently disrupting the users’ sleep may cause
them to quit the application. Finally, logs of snoring data could
also be combined with additional health data collected through
other sensors (e.g. heart rate, step count, ect.) to help users
learn if there are any other triggers to snoring.

C. Ethical Considerations

Overall, we believe that our application sufficiently pro-
tects privacy. Our application maintains constraints on the
flow of information because all predictions are made on a
microcontroller device, meaning all audio data is discarded
after prediction. Our application reduces the attributes of the
data by only sending the sequence of snoring and non-snoring
predictions to a device connected to the internet, like a phone
or computer, which is designated by the user.

Regarding context-relative norms, the context of snoring and
bedroom data is that no one besides those present in the room
or house, can hear the sounds in the room. Our application
(as it currently stands) maintains the autonomy of the user,
by default, because the only people who have access to the
predictions from the microcontroller are the people who have
access to the room and have linked their phone or computer to
the microcontroller device. Since the user has full autonomy

over sharing and holding the flow of information, there are
no ethical issues related to autonomy infringement or risks
with informational leaking that arises from the use of the
device. The user has full control over the flow of snoring
information and is free to choose to disclose it to their doctor.
The user is also not dependent on this tool, which excludes
concerns related to power relations imbalance. There are many
alternatives on the market for snoring detection, which makes
this proposed tool an additional support mechanism, rather
than an indispensable one for people with snoring conditions.

REFERENCES

[1] S Agrawal et al. “Sound frequency analysis and the
site of snoring in natural and induced sleep.” In: Clin
Otolaryngol Allied Sci 27.3 (2002), pp. 162–6.

[2] Shahin Amiriparian et al. “Snore Sound Classification
Using Image-Based Deep Spectrum Features.” In: IN-
TERSPEECH. Vol. 434. 2017, pp. 3512–3516.

[3] B. Arsenali et al. “Deep Learning Features for Ro-
bust Detection of Acoustic Events in Sleep-disordered
Breathing.” In: 2018 40th Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology
Society (EMBC), Honolulu, HI, USA (2018), pp. 328–
331.

[4] Dafna E., Tarasiuk A., and Zigel Y. “Automatic Detec-
tion of Whole Night Snoring Events Using Non-Contact
Microphone.” In: PLoS 8.e84139 (2013).

[5] T. Emoto et al. “Detection of sleep breathing sound
based on artificial neural network analysis.” In:
Biomed.Signal Process 41 (2018), pp. 81–89.

[6] Mesquita J. “All night analysis of time interval be-
tween snores in subjects with sleep apnea hypopnea
syndrome.” In: Medical and biological engineering and
computing (2012), p. 1.

[7] Tareq Khan. “A Deep Learning Model for Snoring
Detection and Vibration Notification Using a Smart
Wearable Gadget”. In: Electronics 8.9 (2019). ISSN:
2079-9292. DOI: 10 . 3390 / electronics8090987. URL:
https://www.mdpi.com/2079-9292/8/9/987.

[8] R. Nonaka et al. “Automatic snore sound extraction
from sleep sound recordings via auditory image mod-
eling.” In: Biomed.Signal Process 27 (2016), pp. 7–14.

[9] Obstructive Sleep Apnea - Causes and Symptoms. Oct.
2020. URL: https : / / www. sleepfoundation . org / sleep -
apnea/obstructive-sleep-apnea.

[10] K. Qian et al. “Classification of the Excitation Location
of Snore Sounds in the Upper Airway by Acous-
tic Multi-Feature Analysis.” In: IEEE Transactions on
Biomedical Engineering (2016).

[11] H.E. Romero et al. “Deep Learning Features for Ro-
bust Detection of Acoustic Events in Sleep-disordered
Breathing.” In: ICASSP 2019—2019 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), Brighton, UK (2019), pp. 810–814.

https://doi.org/10.3390/electronics8090987
https://www.mdpi.com/2079-9292/8/9/987
https://www.sleepfoundation.org/sleep-apnea/obstructive-sleep-apnea
https://www.sleepfoundation.org/sleep-apnea/obstructive-sleep-apnea

[12] T Roth. “An overview of the report of the national
commission on sleep disorders research”. In: European
Psychiatry 10 (1995). Satellite Symposium to the AEP
Congress, 109s–113s. ISSN: 0924-9338. DOI: https : / /
doi . org / 10 . 1016 / 0924 - 9338(96) 80091 - 5. URL:
http : / / www . sciencedirect . com / science / article / pii /
0924933896800915.

[13] Hangsik Shin and Jaegeol Cho. “Unconstrained snoring
detection using a smartphone during ordinary sleep”.
In: Biomedical engineering online 13.1 (2014), p. 116.

[14] Pete Warden. “Speech commands: A dataset for limited-
vocabulary speech recognition”. In: arXiv preprint
arXiv:1804.03209 (2018).

[15] Pete Warden and Daniel Situnayake. TinyML: Machine
Learning with TensorFlow Lite on Arduino and Ultra-
Low Power Microcontrollers. O’Reilly Media Inc.,
2020.

https://doi.org/https://doi.org/10.1016/0924-9338(96)80091-5
https://doi.org/https://doi.org/10.1016/0924-9338(96)80091-5
http://www.sciencedirect.com/science/article/pii/0924933896800915
http://www.sciencedirect.com/science/article/pii/0924933896800915

VI. APPENDICES

A. System and Code Description

A clear description of how to use your system and how to generate the output you discussed in the write-up.The teaching
staff must be able to run your system. Use references from the Supplementary folder layout

Data
The Snoring Dataset can be downloaded from here. The _background_noise_ samples were added from the speech_commands
dataset.

Data Pre-processing

All the separate MFCC and FFT pre-processing algorithms files are in the preprocessing folder.

1) You can apply MFCC or FFT on the dataset by giving the right names to the save_dir and the dir variables and passing
the right argument for the preprocessing method to the main function.

2) To downgrade the sample rate of the audio samples: python3 downgrade_sample_rate.py, making sure that the dataset
dir is set and that the folder layout in the dataset is the following:
Snoring_Dataset

0 (no-snoring wavs)

1 (snoring wavs)

_background_noise_

Model Training
1) Training baseline models

Run the train_snoring_model.ipynb in Colab or Jupyter, setting the directory name of the dataset, PREPROCESS to
micro, and the model flag MODEL_ARCHITECTURE to tiny_conv, single_fc, low_latency, etc. Make sure that you
have access to tensorflow (the train.py, freeze.py in speech_commands are unchanged).

2) Training the additional models
- the CNN from proposed Khan can be trained on the MFCC pre-processed data (see the data processing instructions
above). The backbone of the model is found in the models/snoring-CNN folder.
- To compare the performance of the CNN on MFCC data with the FFT data, run the baselines.ipynb after running the
preprocessing.py script which will generate the preprocessed dataset. These files are found in the CNN model folder

3) To train the customized tiny_conv models, refer to the tiny_conv_custom folder. Replace the models.py script in the
downloaded tensorflow/../examples/speech_commands folder with the script in the tiny_conv_custom folder, which
includes the function for creating the custom models. The summary.md in the tiny_conv_custom folder includes all
the results from training the models, as well as the .cc and .tflite models.

Model Deployment
Deployment video here.
Microspeech code modifications:

1) recognize_commands.h
Change the sensitivity parameters in the RecognizeCommands() object as follows

• tflite::ErrorReporter* error_reporter,
• int32_t average_window_duration_ms = 800,
• uint8_t detection_threshold = 200,
• int32_t suppression_ms = 1500,
• int32_t minimum_count = 2

2) micro_speeech.ino
For models above 18kB size set constexpr int kTensorArenaSize = 100 * 1024;

3) micro_features_model.cpp
Add the model.cc and the size

https://www.kaggle.com/tareqkhanemu/snoring
https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v0.02.tar.gz
https://drive.google.com/file/d/1a0DbmxmQt3T-vHQ8zlxFs0jkoa_-9WzQ/view?usp=sharing

4) micro_features_micro_model_settings.h
Set constexpr int kCategoryCount = 4; . Keep the unknown index = 1, silence index = 0

5) micro_features_micro_model_settings.cpp
Set const char* kCategoryLabels[kCategoryCount] = { "silence", "no_snoring", "snoring", "no_snoring", };

6) arduino_command_responder.cpp
digitalWrite(LEDG, LOW); // Green for snoring
digitalWrite(LEDR, LOW); // Red for no snoring

B. Division of Work

A list of each project participant and their contributions to the project. If this varies significantly from the project proposal,
provide a brief explanation.

1) Kelly Zhang:
• Writing: introduction section, discussion section, results deploying on device, editing
• Presentation: I helped edit the presentation script
• Deployment: I was the primary person in charge of deployment. We initially started with a two class prediction framework

(modifying the original wake words code), which I created. I filmed the deployment video and experimented with the
sensitivity parameters in deployment.

2) Jiayu Yao:
• Writing: Model comparison, proofread, editing
• Models: Pre-processing; implemented some baseline models and all custimized models; investigated MFCC versus FFT

pre-processing difference.
• 5min Presentation

3) Adriana Rotaru: Focused on data pre-processing and modeling and deployment parameters tuning.
a) Writing: related work, references, methods, discussion sections; the supplementary and system and code description.

Computed all the diagrams.

b) Data Preprocessing:
• Implemented the customized MFCC pre-processing in the preprocessing folder.
• Implemented a customized FFT algorithm separate from the one in the speech commands, to compare the performance

of the models with FFT preprocessing versus that of models with MFCC.
• Downgraded the sample rate of the audio files to match it to the sample rate expected by the deployment code, while

preserving the quality of the audio signal.

c) Modeling:
• Trained, tested and compared the 6 baseline models.
• Build the CNN proposed by Khan [7], as shown in Figure [7].

d) Deployment:
• Deployed the tiny_conv and the customized tiny_conv models.
• Set the deployment framework with all the appropriate modifications.
• Tuned the sensitivity parameters for recognition on device for the tiny_conv model.
• Investigated the memory corruption error in deployment, by coordinating with Pete Warden.
Since I trained the baseline models, I had a better grasp of the model features, so I took on part the deployment, modifying

the framework to adapt it to the snoring classification. After discussing with Pete on the deployment issue with predictions
being made too fast and sporadically, I tuned the sensitivity parameters solving the issue.

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/speech_commands

VII. SUPPLEMENTARY

A. Folder Layout

- a summary about each folder in the submission
project

baseline_models

all_summary.md

tiny_conv**

low_latency

low_latency_svdf

tiny_embedding_conv

single_fc**

snoring-CNN

train_snoring_model.ipynb

CNN model

.ipynb training script

neutron models

processed_data

utils.py

preprocessing

preprocessing.py

downgrade_sample_rate.py

tiny_conv_custom

summary.md

.tflite and .cc models

models.py ** models that were deployed

B. Diagrams and Code snippets

CNN model
Baseline Models

(a) low_latency (b) tiny_conv (c) single_fc (d) tiny_embedding (e) conv

Proposed Models

(a) tiny_conv_256_128 (b) tiny_conv_128_64

Fig. 7: CNN model of the Khan snoring paper [7].

	Introduction
	Motivation and Background
	Our Contribution

	Related Work
	Methods
	Dataset and Pre-processing
	Hardware and Sensors
	Software Framework
	Model Architecture
	Deployment Framework

	Results
	Models comparison
	On Device Comparison

	Discussion
	Takeaways
	Future Directions
	Ethical Considerations

	References
	Appendices
	System and Code Description
	Division of Work
	Kelly Zhang
	Jiayu Yao
	Adriana Rotaru

	Supplementary
	Folder Layout
	Diagrams and Code snippets

